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The power output of a single, finite-time Rankine heat engine is studied. The model 
adopted is a reversible Rankine cycle coupled to a heat source and a heat sink by heat 
transfer. Both the heat source and the heat sink have finite heat capacity rate. A 
mathematical expression is derived for the power output of the irreversible heat engine. 
The maximum power output is found. The maximum bound provides the basis for designing 
a real heat engine and for a performance comparison with existing power plants. 

Keywords: heat engine; Rankine cycle; power output; finite-rate effects 

In t roduct ion 

Among the important topics in thermodynamics has been the 
formulation of criteria for comparing the performance of real 
and ideal processes. Carnot showed that any heat engine 
absorbing heat from a higher-temperature reservoir to produce 
work must transfer some heat to a sink reservoir of lower 
temperature. He also showed that no engine could be better 
than the Carnot heat engine. The early tradition was carried 
on by Clausius, Kelvin, and others in using thermodynamics 
as a tool to find limits on work, heat transfer, efficiency, 
coefficient of performance, energy effectiveness, and figure of 
merit of energy conversion devices. The basic laws of thermo- 
dynamics were all conceived about irreversible processes. 
However, the subsequent development of thermodynamics has 
turned away from the process variables of heat and work toward 
state variables since Gibbs. The Carnot-Clausius-Kelvin view 
emphasizes the interaction of a thermodynamic system with its 
surroundings, while the Gibbs view makes the properties of 
the system dominant and focuses on equilibrium states. Con- 
temporary classical thermodynamics gives a fairly complete 
description of equilibrium states and reversible processes. The 
only facts that it tells about real processes are that these 
irreversible processes always produce less work and more 
entropy than the corresponding reversible processes. Reversible 
processes are defined only in the limit of infinitely slow 
execution. 

In the real engineering world, actual changes in enthalpy and 
free energy in an irreversible process rarely approach the 
corresponding ideal enthalpy and free energy changes. No 
practicing engineer wants to design a heat engine that runs 
infinitely slowly without producing power. There is a need to 
model an irreversible and time-dependent thermodynamic heat 
engine which can provide a power bound for designing a real 
heat engine. 

The literature of finite-time thermodynamics started from 
Curzon and Ahlborn.~ They treated a real Carnot engine power 
output being limited by the rates of heat transfer to and from 
the working substance. They showed theoretically that the heat 
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engine efficiency at maximum power output is given by an 
expression different from the well-known Carnot efficiency, and 
they cited cases for which the efficiency of existing engines is 
well described by their result. Rubin 2 defined an endoreversible 
engine. In his simple model of the irreversible heat engine, all 
of the losses are associated with the transfer of heat to and 
from the engine and there are no internal losses within the 
engine itself. Because of the finite conductivity of the heat 
transfer material, the engine is operated not between the 
temperatures of the available high- and low-temperature heat 
reservoirs, T H and T u, but between the temperatures of the 
working fluid on the warm and cold sides of the heat engine 
cycle, Tw and T c. The temperatures T w and Tc depend on the 
rate of the heat flow and also on the power output of the 
machine. The efficiency of the engine also depends on its power 
output. 

Andresen e t  al . ,  3 5 Salamon e t  al . ,  6 and Callen 7 developed 
thermodynamics in finite time to find the extremes for imperfect 
heat engines. A step Carnot cycle was defined and potentials 
for finite-time processes were constructed to determine the 
optimal performance of a real heat engine. Mozurkewich and 
Berry s studied optimization of a real heat engine based on a 
dissipative system. Band e t  al. 9 determined the optimal motion 
of a piston fitted to a cylinder containing a gas pumped with 
a given heating rate and coupled to a heat bath during finite 
times. Rubin 1° explored standards of performance for real 
energy conversion processes and reviewed the argument against 
the use of finitely slow reversible process standards. Rubin and 
Andresen 11 also found the optimal configuration for a class of 
heat engines with finite cycling times and suggested that figures 
of merit based on these optimal configurations may be more 
useful than those based on reversible processes. Rubin 12 then 
treated thermodynamic variables of the working fluid as dynamic 
variables and used mathematical techniques from optimal 
control theory to reanalyze the same class of irreversible heat 
engines as did Curzon and Ahlborn. 1 DeVos 13'14 generalized 
the linear heat transfer equation into a nonlinear form and 
described the results by a heat current flow and engine efficiency 
characteristics similar to the characteristic curve of a solar cell. 
Wu 15 has applied the cycle to an ocean thermal energy 
conversion system (OTEC). He 16 also extended the cycle to a 
cascade cycle and further modified the Curzon and Ahlborn 
simple finite-time heat engine model with both the heat source 
and the heat sink having finite-time heat capacity rate. ~ 
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F i n i t e - t i m e  C a r n o t  heat  eng ine  and its 
p o w e r  o p t i m i z a t i o n  

A practical heat engine is not as efficient as the classical Carnot 
heat engine. To achieve the theoretical Carnot cycle efficiency, 
the isothermal heating and cooling processes of the cycle must 
be carried out infinitely slowly to ensure that the working 
substance is in thermal equilibrium with its heat reservoirs. The 
power output of the cycle approaches zero since it requires an 
infinite time to get a finite amount of work. To obtain finite 
power, we must speed up the cycle. In the other extreme, if the 
heat engine speed were infinitely fast, the heat would flow 
directly from source to sink and no mechanical work would be 
performed by the heat engine. Hence, the power output and 
the heat engine efficiency would be zero. Somewhere between 
these two extremes, the heat engine has a maximum power 
output. The efficiency of the heat engine under the condition 
of maximum output has been evaluated experimentally. 17 

Let the heat engine cycle be made of two isothermal and two 
isentropic processes, as indicated in Figure 1. The cycle is a 
modified Carnot cycle with an irreversible isothermal expansion 
process from state 2 to state 3, an isentropic expansion process 
from state 3 to state 4, an irreversible isothermal compression 
cooling process from state 4 to state 1, and an isentropic 
compression process from state 1 to state 2. Process 2-3 is 
irreversible because heat flows from the high-temperature heat 
source reservoir to the working fluid at temperature T w across 
a temperature difference, as illustrated schematically in Figure 1. 
Similarly, in the irreversible heat rejection process 4-1, heat 
flows across a temperature difference from the working fluid at 
a temperature Tc to the low-temperature heat sink reservoir. 

We note that both the heat source and heat sink have finite 
heat capacity rates. Therefore, the temperature distributions of 
the heating fluid (heat source) and the cooling fluid (heat sink) 
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Figure I Finite-tirne Carnot cycle wi th heat source and sink having 
finite heat capacity rates 
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are not constants throughout the heat exchangers, as shown in 
Figure 1. 

The rate of heat flow from the high-temperature reservoir to 
the system is proportional to the log mean temperature difference 
LMTD s. If ts is the time required to transfer an amount Qs 
of heat, then 

QH = QH/tH = UsAH (LMTDH) (1) 

where 

( T s -  T w ) - ( T 6 -  Tw) 
LMTD H - 

In (T 5 - Tw)/(T6 - Tw) 

Us is the overall heat transfer coefficient including conduction, 
convection, and radiation modes; An is the surface area of the 
heat exchanger between the heat source and the system; and 
T s and T 6 are the inlet and outlet temperatures of the heating 
fluid of the heat source, respectively. 

A similar expression holds for the rate of heat flow QL/tL 
from the system to the low-temperature reservoir: 

QL = QL/tL = ULAL(LMTDL) (2) 

where 

(Tc-T~)-(Tc-Ts) 
LMTD L - 

ln (Tc -  TT)/(Tc- Ta) 

tL is the time required to transfer the heat; UL is the overall 
heat transfer coefficient; A L is the surface area of the heat 
exchanger between the system and the heat sink; and T7 and 
T 8 are the inlet and outlet temperatures of the cooling fluid 
of the heat sink, respectively. 

The usual way to create an isentropic process is to pass the 
working fluid through the isentropic device so quickly that the 
system exchanges little heat with the surroundings. Therefore, 
the times required for the two isentropic processes, t34 and t12, 
of the cycle are negligibly small relative to t H and tL. 

The total time t required for the whole cycle is 

t=tH+tL +t34 .1-tt2=tn+t L (3) 

where t34<<ts, t12<<tH, t34<<t L, tx2<<tL. Since Qs, QL, and the 
output work W are related to the Carnot heat engine operating 
between the temperatures T w and T 0 Equation 3 becomes 

t = QH(UnAH(LMTDH))- 1 + QL(ULAL(LMTDL) )- 

1 W Tw 

- UriAH LMTDH Tw - Tc 

1 W Tc 
-t (4) 

ULA L LMTDL Tw -- Tc 

o r  

W p -  
t 

1 1 Tw + - - - -  

= HdAH LMTDH Tw--Tc ULAL LMTDL T ~ _ T c /  (5) 

where P is the power output of the irreversible heat engine. We 
consider the inlet and outlet temperatures of the heat source 
and heat sink (T s, T6, 7"7, Ts) and the heat conductances 
(UHAH, ULAL) of heat exchangers are to be fixed. P is then a 
function of T w and T c only. Maximizing P with respect to the 
two as yet undetermined working fluid temperatures Tw and 
T c yields 

dP/OTw=O (6) 

ep/3Tc=O (7) 

We solve Equations 6 and 7 numerically to obtain the optimum 
intermediate temperatures. Substituting these values into 
Equation 5 yields the optimum power delivered by the 
irreversible heat engine Pmax- 

It can also be shown that 

~2p/~T2 <0 (8) 

~2P/t~T2 < 0 (9) 

Equations 8 and 9 verify that the power output of the 
irreversible heat engine is indeed the maximum, where P is the 
power output of the reversible heat engine. For a heat source 
and heat sink with infinite heat capacity, the temperature 
distributions of the heating and cooling fluids are constants 
throughout the heat exchangers, as shown in Figure 2. The 
case then simplifies to that of Curzon.~ Equations 1, 2, and 5 
become, respectively, 

Q./tH = UHAH(Tn- Tw) (10) 

gL/tL = ULAL(Tc - TL) (11) 

W p -  
t 

1 1 T w 1 1 T c 
(12) 

= UsA. TH-- Tw Tw -- Tc ULAL T c -  TL Tw - Tc 

where 7". = T5 = T6 and TL = T7 = Ts. 
The optimum intermediate temperatures are 1 

Tw=C(T.)  °s (13) 

T c = C(TL) °'5 (14) 

where 

C = [(UHAHTH) °'5 + (ULALTL)°5][(UHAH) °5 + (ULAL) °'5] - l 

(15) 

Substituting Equations 13 and 14 into Equation 12 yields the 
optimum power delivered by the irreversible heat engine and 
the efficiency at optimum power. 

gmax = UHAHULAL( T°'5 -- T°'5)2((UsAH)°'5 + (ULAL)O'5) - 2 (16) 

P=a" 1--(TL~ °'5 (17) 
r / = Q ~ =  \ T . , ]  
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for the heat source and sink 
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Curzon and Ahlborn 1 claimed that large power plants are 
operated closer to this efficiency than to the Carnot efficiency, 
and illustrated their claim by comparisons with a coal-fired 
steam-power plant, a nuclear reactor, and a geothermal steam- 
power plant. 

F i n i t e - t i m e  Rank ine  heat  eng ine  

The Carnot vapor cycle is not practical because oftbe difficulties 
encountered in carrying out some of the processes in actual 
devices. However, the difficulties with the Carnot vapor cycle 
may be eliminated by replacing the isothermal heat transfer 
processes with isobaric processes. We would have a finite-time 
Rankine engine consisting of two isentropic and two irreversible 
isobaric processes, as shown in Figure 3. Again, the finite-time 
Rankine cycle is a heat engine where possible irreversibilities 
can only take place in the heat transport and not in the 
conversion of the heat to power. Since the area under process 
2-3 in the T-s diagram of Figure 2 represents the amount of 
heat added to the Rankine cycle, if we make this area equal 
to the area under a horizontal line (isothermal process) with a 
mean effective temperature of heat addition, TM, we would have 

TM(S3-  S2)=QH= H3 - H  z (18) 

and 

T M = (h 3 - h2)/(s 3 - s2) (19) 

where S and H are total entropy and enthalpy, and s and h are 
specific entropy and enthalpy, respectively. 

The modified finite-time Rankine cycle becomes a finite-time 
Carnot cycle operating between TM and Ta. Since T~ is the 
same as T c in Figure 1 while TM= T 3 (Tw in Figure 1), the 
finite-time Rankine cycle is seen to have a lower thermal 
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efficiency and output power than those of a finite-time Carnot 
cycle operating between the same temperature limits. To raise 
the mean effective temperature of heat addition, we need a 
superheater in the real Rankine cycle. An efficiency and power 
output analysis on the finite-time Rankine heat engine is 
performed in the following numerical example. 

N u m e r i c a l  e x a m p l e  

We take the inlet and outlet temperatures of the heating 
and cooling fluids to T 5 = 700 K, T 6 = 529 K, 7"7 = 293 K, 
and Ts=303K. Also let ULAL=I MW/K, and UHAH= 
0.03647 MW/K. 

P = (x -- y)abuv/(xv + ayu) = Z (20) 

where 

Ts-r6 
u -  = LMTD n (21) 

In (7"5 -- x)/(  T6 -- x) 

7"8--7"7 
v - LMTD L (22) 

In ( y -  T T ) / ( y -  Ts) 

a = UHAa/ULA L (23) 

b = U L A L  x = T w  y = T  c (24) 

P is a function of x and y. A typical plot of P(x,  y) is shown 
in Figure 4. The numerical solution for optimum power of a 
finite-time steam Rankine heat engine yields Tw =458 K, Tc= 
319K, and Pro,x= 1.46 MW, respectively. A practical engineer 
could match the temperatures (Tw, Tc) with a condenser 
pressure of 10kPa (saturation temperature is 319K) and a 
boiler pressure of 2 MPa (saturation temperature is 485 K). 
Referring to the states in Figure 3, we find their thermo- 
dynamic properties: sl = 0.649 kJ/kg K, hi = 192 kJ/kg, vl = 
0.00101m3/kg, Sa=6.34kJ/kgK, and h3=2800kJ/kg. The 
specific pump work, enthalpy at state 2, quality at 4, enthalpy at 
4, turbine work, net work, heat added, and cycle efficiency can 
be calculated as w v = 2 kJ/kg, h2 = 194 kJ/kg, x 4--- 0.759, h4 = 
2007 kJ/kg, w x = 792 kJ/kg, w N = 790 kJ/kg, qA = 2605 kJ/kg, and 
r/= 0.303, respectively. Notice that the mean effective tempera- 
ture of heat addition, TM = (h 3 -hE) / ( s3 -s l )=458  K, is equal 
to Tw exactly. 
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The efficiency of a finite-time Carnot  heat engine operating 
between the same temperature limits of 319K and 485K is 
0.5226. 

Conclusion 

An irreversible Rankine heat engine may be modeled by using 
an irreversibility factor and a time factor to simulate the primary 
heat transfer processes for the rate of energy exchange between 
the heat engine and its surroundings. This approach gives a 
very realistic prediction of heat engine efficiency. The power 
optimization process also provides a power bound for designing 
a real heat engine and for performance comparisons between 
existing heat engines. 
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